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Abstract—Human-robot collaboration will largely improve hu-
man efficiency in the future. But it’s a hard problem for the robot
to sense the diverse strategies that human could adopt and take
corresponding actions. A recent approach provides a possible
solution to this problem. The Co-GAIL method, which can handle
diverse human behaviors for training robot assistants, optimizes
human and robot strategies collaboratively during interactive
learning. In this paper, we improved the actual collaboration
experience between human and robot by proposing two alphas.
One is to create a more separable strategy space for the Co-
GAIL method. The other one is to introduce a pre-trained role
detector to make the flexible switch between human and robot
be possible. We don’t see a clear improvement in the alpha-1,
but a follow-up experiments could indirectly explain the possible
reasons. But alpha-2 achieves a nearly similar performance as a
pre-defined upper bound.

I. INTRODUCTION

Smart manufacturing and factories rely on automation and
robotics, and Human-Robot Collaboration (HRC) helps im-
prove the efficiency and productivity of industries [3]. Lim-
ited versatility in performing collaborative tasks of robots
considerably restricts the potential development of HRC [4].
Adaptation to diverse human strategies and movements in col-
laborative manipulation tasks is a critical objective for current
improvement of robot assistants. The Co-GAIL [5] method
can be used to handle diverse human behaviors for training
robot assistants, which optimizes human and robot strategies
collaboratively during interactive learning. The human policy
will learn to generate diverse and plausible collaborative
behaviors from demonstrations, while robot policy learns to
facilitate by estimating the unobserved potential strategies by
human collaborators. The ability of sensing diverse strategies
the human takes owe to the introduction of one strategy space,
where variant strategies will be represented as codes in this
latent space.

However, ambiguity could still be found in this latent space.
Some codes from different strategies are not separated from
each other. We argue this could negatively affect the final
performance and introduce one classifier that could make the
latent space more separable. This is defined as our alpha-1.
Another drawback of Co-GAIL results from the necessity of
fixing the role of human and robot in advance, which could
badly influence human user’s experience in real life. We solve
this issue via introducing one pre-trained role detector to make
robot flexibly select corresponding policy depending on the

role that human might play. This is defined as our alpha-2.
Therefore, our contributions are listed as follows:

1) We prove that the separability of strategy space could
largely affect the performance of Co-GAIL, and propose
a new method to make the strategy space as separable
as possible.

2) By introducing a pre-trained role detector, we improve
the actual human-robot collaboration experience.

II. RELATED WORK

Human-robot collaboration (HRC) has been a popular re-
search area due to its wide range of applications. Various
learning approaches have been proposed, enabling robots to
cope with diverse human behaviors. Many work try to make
use of multi-agent reinforcement learning (MARL) to learn
collaborative strategies [6], [7]. However, prior studies in
learning diverse behaviors tend to train strategies to make their
behaviors diverse [8], [9]. Co-GAIL instead tries to optimize
for covering the behaviors shown in demonstrations.

III. METHOD

In this section, we give a brief introduction to an algorithm
called Co-GAIL, which will be used as baseline method in
alpha-1. Then we introduce the proposed alpha1 and alpha2,
one aims to improve the performance of Co-GAIL, and the
other one aims to improve the human experience for real life
human-robot collaboration task.

A. Problem Formulation

Let us consider the human-robot collaboration task as
an variant of Markov Decision Process (MDP) called
two-agent Markov games that is defined as M =
(S,AH , AR, T,R, γ, ρ0), with state space S, human action
space AH , robot action space AR, transition distribution
T (st+1|st, aHt , aRt ), reward function R(st, aHt , a

R
t , st+1), dis-

count factor γ ∈ [0, 1), and initial state distribution ρ0.

B. Co-GAIL

Co-GAIL is an method trying to learn human-robot collab-
oration policy from human-human collaboration demonstra-
tions. To reach the goal, they apply the multi-agent extension
of the Generative Adversarial Imitation Learning (GAIL)
framework called MA-GAIL, which train a co-policy πco to
imitate expert policy (πE1

, πE2
) so as to minimize the distance



Fig. 1. Co-GAIL Architecture (a) co-policy πco takes states s and strategy
code z as input, output actions pair (aH , aR), which will be used to compare
with expert demonstrations in GAIL setting. ψ model is used to generate
strategy code z with states s and aH as input. (b) The ψ and πco models are
trained as auto-encoder to learn La

between generated distribution ρ(πco) and expert’s distribution
ρ(πE1

, πE2
):

min
πco

max
D

Ex∼ρ(πE1
,πE2

)[logD(x)]+Ey∼ρ(πco)[log(1−D(y))]
(1)

However, human could act differently given the same envi-
ronment state s because human may take different strategies
for the same task. The strategy could be inferred from history
of observations and the human action that are denote as
ht = (st−K:t, at) at timestep t. To make learned co-policy
take human strategy into consideration in order to improve
the performance, a strategy recognition model ψ(zt|ht) is
proposed to learn a 2 dimensional strategy code z, where K
denotes the length of history. The architecture of MA-GAIL
equipped with strategy recognition model is shown in Figure 1
(a).

In addition, the human policy tends to ignore the latent strat-
egy z and always opt to generate the most common behaviors.
Therefore, a human strategy reconstruction loss(Equation 2) is
introduced in Co-GAIL to avoid this (Figure 1 (a)). The second
challenge is the imbalance distribution of training data, and to
solve this, a human behavior reconstruction loss(Equation 3)
is again introduced in Co-GAIL (Figure 1 (b)).

Lz = Ez∼p(z),h∼ρ(πH
co(·,z)∥ψ(h)− z∥ (2)

La = E(ht,st,sHt )∼pM∥πHco(st, ψ(ht))− aHt ∥ (3)

The final objective function for Co-GAIL could be derived
by combining the above loss functions.

C. Alpha-1

Fig. 2. Visualization of latent space for MA-InfoGAIL, DIAYN and Co-GAIL

The idea of Alpha-1 is inspired from the visualization of
the learned latent strategy space (As shown in Figure 2) where

different types of task-specific strategies are represented. We
realized that Co-GAIL’s latent space (i.e., strategy space) is
more separable compared to other two methods’, including
MA-InfoGAIL [10] and DIAYN [11]. Hence, we assume that
if different strategies can be more separable in the latent
space, the better results would be generated. Because the
overlapping latent codes of different strategies could only
provide ambiguous information for the co-policy. The more
separable the strategy space is, the easier for the co-policy
to generate action pairs matching the corresponding human
strategy.

The reason why Co-GAIL achieve a more separable strategy
space owe to the introduction of La(As shown in Figure 1 (b)).
La will enforce ψ model to generate different z for different
aH , which makes Co-GAIL’s latent space more separable com-
pared to other methods. However, human strategy could also
be different when aH is the same but history of observations
are different. In this case, the psi model in Co-GAIL will only
lead to the same strategy code, which is why there are still
some overlaps in Co-GAIL’s strategy space.

Therefore, to make the strategy space as separable as possi-
ble, we introduce a classifier ϕ in strategy space to discriminate
latent codes of different strategies in a supervised learning way.
When training the whole model equipped with this classifier,
the ψ model will be enforced to generate more separable
strategy code and then make the co-policy generate more
diverse strategies. Labels in the supervised learning setting
are collected manually together with demonstrations, denoted
as ℓ . Then we could get a new loss function, which would
be added to the objective function (i.e., Equation 5):

Lclassifier = Ez∼p(z),h∼ρ(πH
co(·,z)),ℓ∼pMϕ(ψ(h), ℓ) (4)

Combined with the Lclassifier, the objective function for
alpha-1 could be derived:

min
ψ,πco

max
D

Ex∼ρ(πE1
,πE2

)[logD(x)]+

Ey∼ρ(πco)[log1−D(y)]+
λ1Lz + λ2La + λ3Lclassifier

(5)

where λ1, λ2 and λ3 are the hyper-parameters for the
intention, expert behavior reconstruction regularization term
and the strategy classifier term.

D. Alpha-2

Fig. 3. Alpha-2 Architecture



In current two-agents implementation, the roles of leaders
and followers must be assigned to the human agent and the
robot agent in advance. For example, in a hand-over task,
the human’s role is fixed to give item to the robot and the
robot can only take the item. We argue that this certainty
could negatively affect the human user’s experience if it’s in
a real life scenario because the robot couldn’t flexibly select
a different policy when human user plays a different role.

To improve human user’s experience in one real life human-
robot collaboration scenario, we propose a pre-trained role
detector. We assume that the role of human could be detected
from initial sequence of actions. As shown in Figure 3, an
RNN model will be trained to classify sequences of actions so
that it could detect the role human might play when evaluation.
The robot could choose the corresponding policy πrole1co or
πrole2co according to the human role provided by this role
detector.

IV. EXPERIMENTAL EVALUATION

In this section, experimental results are shown to validate
the proposed alpha-1 and alpha-2. Experiments are designed
to test the following hypotheses:

1) The performance of human-robot collaboration could be
improved when strategy space is more separable.

2) The proposed alpha-1 could improve the performance of
baseline method Co-GAIL.

3) Human’s role could be detected initial from sequence of
actions.

4) The proposed alpha-2 could improve human-robot col-
laboration experience.

A. Experiment Setup

Fig. 4. (a) Human-robot collaboration pygame program: 2D-Fetch-Quest. (b)
Human handover one item to the robot.

1) Datasets: We use the same dataset and data split method
as baseline paper [5]. For alpha-1, we use demonstrations
collected in a Pygame program (2D-Fetch-Quest, as shown
in Figure 4 (a)). 120 trajectories are used in training and 90
trajectories are used for evaluation. Note that strategy labels
are only available for strategy 3 and 4, labels for strategy 1 are
mixed up together. So we label demonstrations of strategy 1
and 2 as label-1, strategy 3 as label-2, and strategy 4 as label-3.
For alpha-2, we use demonstrations collected in a simulation
environment iGibson [12], [13] and they are all about the one
handover task (as shown in Figure 4 (b)). 154 trajectories are
used in training and 67 trajectories are used for evaluation.

2) Classifier architecture: For alpha-1, a 3-layers neural
network with 8 hidden neurons is used for this classification
task. We choose cross-entropy as our loss function. For alpha-
2, an RNN network with 64 hidden neurons stacked with one
fully-connected layer is used for the sequence classification
task.

3) Training and evaluation details: We use the successful
rate over all the evaluation data as our metrics to measure the
performance for both alphas. As to Alpha-1, according to the
training curve(Figure 5), we set training epochs as 500 in total.
The model is saved every 30 epochs. The weight of classifier
loss function is 1 and we run the whole training process for 5
times by using 5 different random seeds, and follow the same
procedure in the evaluation process. We set λ1, λ2 and λ3 as
1.0. For Alpha-2, the RNN model is trained for 100 epochs.
The training of both πrole1co and πrole2co follow the same line as
original Co-GAIL.

Fig. 5. Training Curve of Alpha 1

B. Results for Alpha-1

Fig. 6. Strategy space for Alpha1(left) and Baseline(right)

We obtain our results by evaluating the trained model on
testing data for 5 times by using different random seeds.
Every point every 30 epochs for each method is calculated
by averaging the 5 values. 95% confidence interval is also
calculated for both alpha-1 and baseline. As shown in Figure 7,
line with orange region represents the performance of alpha-
1 and line with blue region represents the performance of
baseline method. We have the following observations:

1) We observe a better performance for alpha-1 compared
to baseline method from 120∼300 epochs, which means
the training speed for alpha-1 is faster.

2) We don’t observe a clear improvement for alpha-1
compared to baseline method after both two method’s
model being well trained (i.e., after 360 epochs).

We argue that both observations could be explained if the
first proposed hypothesis is right, that is the performance could



be improved when the strategy space is more separable. For
the first observation, as mentioned in Section III-C, the original
Co-GAIL method could bring partial separable feature to the
strategy space owing to the introduction of La, but our alpha-1
boosts this process. This means that the strategy space could
be earlier separable, which makes the performance improved
faster if first hypothesis holds. As to the second observation,
we argue that this results from the same level of separable
strategy space. According to the visualization of strategy space
(Figure 6) generated from well trained model (i.e., obtained
at 480 epoch), we could find that although alpha-1’s strategy
space has much more separable clusters, boundaries between
clusters in baseline method’s strategy space are still easy to
find. Therefore, when model is well trained, the strategy space
for both methods could be easily separated, and this makes
alpha-1 and baseline method achieve similar performance after
360 epochs. However, we think this is a special case for
2D-Fetch-Quest task because the state and action space is
small, which makes the introduction of La enough to separate
the strategy space. For those high dimensional tasks such as
handover task, the strategy space is hard to perfectly separate
as shown in Figure 2. For those cases, we believe alpha-1
could outperform the baseline method.

Owing to the lack of labels for handover task’s demonstra-
tions, we currently cannot implement direct experiments to
verify the excellence of alpha-1 for handover task. Instead,
we design a follow-up experiment to verify the first proposed
hypothesis, which we believe could indirectly explain the 2
observations as stated above.

An opposite effect could be seen if λ3 in Equation 5 is
set to negative, that is the clusters in strategy space will be
less separable. As shown in Figure 8, the performance will
be better when the absolute value of λ3 becoming smaller,
where the first hypothesis holds, which indirectly explains the
observations in the second hypothesis.

Fig. 7. Successful rate with respect to the number of epochs

C. Results for Alpha-2

For alpha-2, robot will switch its role between role1 and
role2 flexibly depending on human’s role. We assume that
human’s role could be detected from initial sequence of actions
as stated in the third hypothesis. We test this hypothesis by
training an RNN model to classify human’s role given his/her
initial sequence of actions. As shown in Figure 9, the RNN
model converges quickly. When applied to evaluation data, the

Fig. 8. Performances are improved gradually as λ3 is set to 0.3, 0.1, 0.01, 0

RNN model reaches an average value of accuracy at 88.7%
with standard deviation at 0.039, where the third hypothesis
holds.

We then define an upper bound method where the human’s
role detection is 100% correct. When evaluation, the role of
human is set randomly before the start of one trajectory. Then
the robot equipped with the pre-trained role detector need
to select corresponding policy flexibly in order to improve
the successful rate. As shown in Figure 10, alpha-2 achieves
similar successful rate as the upper bound, where the fourth
hypothesis holds.

Fig. 9. Training curve for the RNN model

Fig. 10. Comparison between upper bound and alpha-2

V. CONCLUSION AND FUTURE WORK

Based on the Co-GAIL method [5], we proposed two alphas
that could help improve human-robot collaboration experience.
Alpha-1 is inspired by the observation that better performance
could be achieved when strategy space is more separable.
Although we don’t see a clear improvement for the 2D-Fetch-
Quest task, we have informally proven the potential of alpha-
1 in complex tasks with one follow up experiment. Alpha-2



succeed to make robot flexibly select correct policy depending
on human’s role.

In the future, more detailed experiments for complex tasks
need to be implemented to directly verify alpha-1. As for
alpha-2, currently policies available for the robot to select
are limited, more intelligent pre-training approach should be
designed.
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