Initialization Study of Generative Adversarial
Imitation Learning

Yue Yang
College of Computing
Atlanta, United States of America
yyang941@gatech.edu

Abstract—Generative Adversarial Imitation Learning (GAIL)
is an approach of imitation learning that uses demonstration data
by experts and learns the unknown environment’s policy directly
from data. One of its drawbacks is that it is unstable and difficult
to train, so we propose a flexible framework for studying GAIL’s
initialization. We design 3 experiments and show that certain
instantiations of our framework yields significant improvement
gains. We have also provided several conclusions that are valuable
for practical GAIL training.

I. INTRODUCTION

Reinforcement learning (RL) is a popular algorithm that
could be helpful to solving complicated control problems,
where manually designing reward function is oftentimes neces-
sary. However, this could be intractable and time consuming. A
feasible way to solving this problem is Imitation learning (IL).
IL is an agent’s acquisition of skills or behaviors by observing
an expert demonstrating a given task, and extracts information
about the expert behavior and surrounding environments, then
learning a mapping between the scenario and given behavior.
A standard imitation learning process starts with acquiring
demonstrations from an expert which are then used to train
a policy. The agent then acts out the policy and refines it
depending on performance[Hussein and Jayne, 2017].

Inverse reinforcement learning (IRL) is one popular algo-
rithm in IL that implicitly learns the reward function. Most
IRL algorithms require reinforcement learning in an inner
loop and thus is expensive to run especially when scaled
to large environments. GAIL was designed to bypass those
intermediate RL steps and directly learn policy from data.
It runs reinforcement learning on a cost function learned by
maximum causal entropy IRL.

However, GAIL is not sample efficient in regards to environ-
ment interaction during training, and struggles with learning
a policy from multi-modal demonstrations as it assumes all
demonstrations come from a single expert. Adversarial im-
itation learning is quite successful in various environments,
but “adversarial methods are shown to be unstable, and in
the presence of low amounts of data, can take a long time to
converge” [Jena and Sycara, 2020b]. Ho and Ermon [2016] ar-
gue that the learning speed of GAIL could be significantly
improved once behavioral learning is used for initialization,
which inspires us to study the best way for initialization. We
propose a framework that can flexibly test pre-trained policies

Tongzhou Yu
College of Computing
Atlanta, United States of America
tyu310@gatech.edu

Julia Zhu
College of Computing
Atlanta, United States of America
jzhu407 @gatech.edu

generated by different methods with different dynamics as
initialization for the initialization of GAIL. Contributions of
this work are shown as follows:

1) Propose a framework for flexibly studying the initializa-
tion of GAIL.

2) Design different and meaningful settings for different
initialization methods, and provide 3 detailed experiments
to study them.

3) Draw several valuable conclusions that could be guidance
for GAIL training.

II. RELATED WORKS

The two main approaches to imitation learning are behav-
ioral cloning [Torabi et al., 2018], which learns a policy as a
supervised learning problem over state-action pairs from ex-
pert trajectories, and inverse reinforcement learning (IRL) [Ng
et al., 2000], which finds a cost function under which the
expert behavior is uniquely optimal and based on cost rather
than policies. GAIL [Ho and Ermon, 2016] was designed with
a framework that directly learns policies from data, which
bypasses any intermediate IRL steps. The algorithm also uses
generative adversarial training to fit distributions of states
and actions defining expert behavior, and has been proven
to outperform competing methods (e.g. behavioral cloning,
feature expectation matching, game-theoretic apprenticeship
learning) in training policies for high-dimensional physics-
based control tasks over expert data.

Transfer learning is used to improve performance of one
learner in one domain by transferring knowledge learned from
learner in the other domain [Weiss et al., 2016], which has
achieved great success in computer vision area. For control
tasks, skills learned by one agent could be useful for learning
other skills via training an invariant feature space [Gupta et al.,
2017]. Eysenbach et al. [2018] has shown that a pretrained
policy generated by maximizing the entropy of states and
minimizing the conditional entropy of states with respect to
actions could provide a good initialization for downstream
tasks, which is similar to a vanilla transfer learning setting.

Initializing parameters can have a drastic impact on training,
as any errors can be propagated during training. In deep neural
networks, incorrect initialization can lead to issues such as
the vanishing or exploding gradient problem. For instance,
initializing all weights with zeros leads the neurons to learn



the same features during training[Katanforoosh and Kunin].
Traditional initialization methods include gaussian distribution
and uniform initialization. Gaussian distribution initializes
weights with a distribution that has a mean of zero and a
standard deviation of one. In uniform initialization, weights
belong to a uniform distribution. Our proposed method could
bring a much more powerful initialization because a pre-
training process is needed, but we argue it’s worthwhile.

III. METHODOLOGY

In this section, we present a simple framework of studying
the initialization of generative adversarial imitation learning
(GAIL). The problem formulation will be shown and we’ll
also give a brief introduction to core methods that are parts of
the proposed framework.

A. Preliminaries

1) Problem Formulation: Let us consider a Markov De-
cision Process (MDP) task that is defined as M =
(S,A,T,r po,7), where S represents the state space, A rep-
resents the action space, T : S x A x S — R represents the
transition matrix, r denotes the reward function, pg represents
the initial state distribution, and v denotes the discount factor.
Let my denote the learned policy and wr denote the expert
policy.

2) Generative Adversarial Imitation Learning: Generative
Adpversarial Imitation Learning (GAIL) [Ho and Ermon, 2016]
originated from inverse reinforcement learning where you need
to estimate some unknown reward and learn a policy based
on the recovered reward. This could be extremely expensive
because you have to solve a reinforcement learning problem
within a learning loop. GAIL solved this issue by introduc-
ing a discriminator to implicitly learn the reward function
automatically. In the GAIL framework, the expert policy’s
behavior is imitated by the learned policy via minimizing the
distance between two distributions generated by each other.
The distance is measured by introducing the Jensen-Shannon
divergence, where the GAIL objective could be derived:

minmazx Er,[logD(s,a)]+
To D (1)
E,.[logl — D(s,a)] — \H (mp)

where D is the discriminator classifier which tries to tell apart
the distribution generated by the expert policy 7 and learned
policy 7. H(mp) = E,,[~logme(a|s)] is the causal entropy
used as a policy regularizer controlled by A > 0 [Bloem and
Bambos, 2014].

3) Behavioral Cloning: Behavioral Cloning (BC) is one
line work of imitation learning, which tries to cast the task
of learning from demonstrations to a supervised learning
method. Although there exists some concerns about its short-
comings [Ross et al., 2011, Tu et al., 2021], it’s still practical
in some real scenario tasks [Zhang et al., 2018]. Many methods
are devoted to solve the existing issues of BC, but we here
will adopt the simplest setting. As most supervised learning
method, the BC takes a form of a = Fy(s), where Fy denotes a
feed-forward model (e.g., a deep neural network), s represents

the current state, and a is the predicted action. The predicted
action will be compared with those in demonstrations to force
the g generate more similar actions at the current state s.

B. Framework for GAIL’s initialization

Despite the success adversarial learning has achieved in
many fields, instability and difficulty for converging given low
amounts of data have always been a big issue [Jena and Sycara,
2020a]. This kind of issues also hold in GAIL considering
its adversarial essence. In addition, some researchers [Li
et al., 2017] point out that GAIL tends to fail generaliz-
ing environments with different dynamics. Actually, GAIL
seems to assume the single-modality of demonstrations [Fu
et al.,, 2017], so it’s quite struggle for GAIL to learn from
heterogeneous demonstrations. Therefore, it’s vital to find a
good initialization that could oftentimes provide a proper start
point for the following optimization. We propose to use pre-
trained method’s policy as initial policy for GAIL as our
initialization method, which have the following benefits: 1)
pre-trained method could bring start point to a better position
compared to traditional methods. 2) pre-trained method has
the potential to distill knowledge from demonstrations with
different modality, which is beneficial for GAIL that can only
learn from demonstrations of single modality.

In this section, we present a framework for the initialization
of GAIL, where the general idea is using pre-trained policy
as the initial policy for GAIL before the formal training.
The proposed framework could flexibly take two important
features that may affect the initialization performance into
consideration, including the pre-trained methods and dynamic
parameters. As shown in Figure 1, the framework is composed
of two parts: Pre-train Module and GAIL Module. As for the
GAIL module, it’s a vanilla GAIL algorithm. What makes
it different is the initial policy my that will be replaced by
the output of Pre-train Module. In the Pre-train Module,
different combinations of pre-train method and dynamics will
be used to generate the initial policy for GAIL Module.
We have designed four different pre-train methods, including
randomization, Behavioral Cloning (BC), RL with simple
reward function and another GAIL. We modify the dynamics
by changing the length of agent’s parts. The selected method
will be trained in the selected dynamics and give the initial
policy for downstream GAIL Module.

Note that the Pre-train Module is repeatable, which means
that it can be stacked one by one. For instance, to stack two
Pre-train Modules, the generated policy by the first Pre-train
Module will be used as input policy for the second Pre-train
Module. And the second Pre-train Module will then provide
initial policy for the downstream GAIL module.

IV. EXPERIMENTS AND RESULTS
In this section, we will show design of experiments and the
correspond results.
A. Experimental Setup

1) Demonstrations: The expert demonstrations for GAIL
and BC to imitate are collected using Soft Actor-Critic



Pre-train Module

Methods

Behavioral
RL with simple Cloning
reward function,

Repeatable
Modules

Dynamic
Parameters

Ant-v0 with
75% leg length,
Ant-v0 with
50% leg length

Selected Method

Selected Dynamics

Framework for the initialization of GAIL

GAIL Module

Demonstrations-Main

—Tralmn

Fig. 1. Framework for the initialization of GAIL. The GAIL method will be used as a downstream module for a repeatable pre-train module, where different

combinations of method and dynamics will be studied in this report.

(SAC) [Haarnoja et al., 2018]. The algorithm is run on the
selected dynamics and 50 trajectories of rollouts will later be
collected as our expert demonstrations.

2) Training details: For all experiments, the epoch number
is set to 70. We have also run each experiment for 3 times by
using different random seeds in order to avoid variance. The
best performance in these 3 iterations will be selected.

3) Dynamic parameters setting: We choose
Mujoco [Todorov et al., 2012] as our simulation environments
and Ant-vO0 as the agent. We make dynamic parameters
variable by setting length of two ant’s legs to different float
numbers. In our setting, two lengths are used: 50% original
length and 75% original length (As shown in Figure 2). We
also try repeating the pre-train method on the former first and
then on the later so as to study the stack feature of Pre-train
Module. This is called “Ant-v0 with repeated dynamics”.

B
Do

Fig. 2. Ant-v0 with 50% original length(left) and Ant-vO with 75% original
length(right)

4) Experiments design: GAIL with randomization initial-
ization in default Ant-v0 is used as our baseline method. We
totally design 3 experiments to study three different aspects
of initialization for GAIL:

(a) Experiment-1: Study the best pre-trained method. BC
and RL with simple reward function are compared here.
The dynamics will be fixed to default Ant-v0 for both of
them.

(b) Experiment-2: Study the best dynamics setting in Pre-
train module. default Ant-v0O, Ant-vO with 50% length,
Ant-v0 with 75% length and Ant-v0 with repeated dy-
namics will be compared. The pre-train method is fixed
to BC.

(c) Experiment-3: Study whether GAIL itself can learn
a good initialization by pre-training GAIL in different
dynamic parameters. GAIL pre-trained on Ant-v0 with
50% length, Ant-vO with 75% length and Ant-vO with
repeated dynamics are compared.

B. Results

In this section, we show the results generated by following
the experimental design.

1) Experiment-1: Experiment-1 tries to study the best pre-
trained method via comparing BC and RL with simple reward
function. As shown in Figure 3, performance of GAIL pre-
trained with behavioral cloning is much better than by RL
with a simple reward function.

The possible reason why rl with simple reward function
gets a bad result is as follows: we simulate the scenario
of designing simple reward function as just adding noise to
observation and action space because we suppose they all get
not so good results, but this simulation process may bring some
variance that negatively affect the performance of RL. And the
BC is better because it also learn from demonstrations, which
is the same as GAIL, that could provide a similar policy.

2) Experiment-2: Experiment-2 tries to study the best dy-
namics setting in Pre-train module. As shown in Figure 4, We



1800
1600
1400
1200
1000
800
600
400

200 T

—— 1l with simple reward function
be-gail, default Ant-v0

Perfarmance

-200
—-400
-600
-800
-1000
-1200
1] 10 20 30 40 50 60 70
Epochs
Fig. 3. Study the best pre-trained method.

have the observation that the best performance will be achieved
when same dynamics are shared between the Pre-train Module
and GAIL Module.

A possible explanation is that GAIL is sensitive to change
of dynamic parameters, so BC trained in the same dynamic
parameters as the GAIL Module could bring more benefits.

1800 —— bc-gail, default Ant-v0
1600 be-gail, Ant-v0 with 50% leg length
—— bc-gail, Ant-v0 with 75% leg length
1400 —— bc-gail, Ant-v0 with repeated dynamics
1200
o 1000
(]
5
E 800
2 600
]
o
400
200
0
=200
0 10 20 30 40 50 60 70
Epochs

Fig. 4. Study the best dynamics setting in Pre-train module.

3) Experiment-3: Experiment-3 tries to study whether
GAIL itself can learn a good initialization by pre-training
GAIL in different dynamic parameters. As shown in Figure 5,
we have two observations: 1) GAIL pre-trained on different
dynamics are better than random initialization (i.e., baseline
method), which might result from that GAIL can learn better
on simple tasks when pre-trained on harder tasks if we assume
ant with two legs shorter are harder to run. 2) Pre-train
GAIL in Ant-v0 with repeated dynamics could gain the best
performance. We suppose the possible reason is that policy
experiencing different dynamic parameters might average them
and thus give a more meaningful initial policy.

4) Summary of all experiments: All methods with different
dynamic parameters are presented in Figure 6. We have also
calculated statistical data by evaluating the last ten epochs,

1400 g baseline, default Ant-v0

gail-gail, Ant-v0 with 50% leg length

1200
—— gail-gail, Ant-v0 with 75% leg length
1000 —— gail-gail, Ant-v0 with repeated dynamics
800
@©
=
@ 600
E
2 400
@
o
200
0
-200
-400
0 10 20 30 40 50 60 70
Epochs

Fig. 5. Study whether GAIL itself can learn a good initialization by pre-
training GAIL in different dynamic parameters.

which are shown in Table I. We could see that the best setting
is fix pre-train method as BC and for Pre-train Module use
the same dynamics as GAIL module.

—— baseline, default Ant-v0
rl-gail, default Ant-v0
1600 be-gail, default Ant-vQ
—— bogail, Ant-v0 with 50% leg length
—— begail, Ant-v0 with 75% leg length

1400

1200 —— begail, Ant-vO with repeated dynamics
gail-gail, Ant-v0 with 50% leg length
1000 gail-gail, Ant-v0 with 75% leg length

gail-gail, Ant-v0 with repeated dynamics

Performance

0 10 20 0 40 50 60 70
Epochs

Fig. 6. Summary of all experiments’ results

V. DISCUSSION

As for RL with simple reward function, we see a very poor
performance. We argue that it results from the wrong way for
us to implement it as stated above. Another issue emerged in
our results is that some settings’ curve don’t show a plateau
and are still increasing, that’s because the training epoch is
not large enough owing to time limitation.

VI. CONCLUSION AND FUTURE WORK

In this work, we proposed a framework for the initialization
of GAIL, using which we see a huge improvements for several
settings. By designing three experiments, we could gain the
following valuable conclusions from the generated results:

1) Training GAIL using BC as pre-trained method is a good
idea.



TABLE I
STATISTICAL DATA FOR ALL SETTINGS
Mean Value Std Value
baseline, default
Ant-v0 160.44 223.17
:Il{;gall, default Ant- 084.87 9323
‘l?(:i-gall, default Ant- 1634.30 108.57
BC-gail, Ant-v0 with
50% leg length 127391 33.33
BC-gail, Ant-v0 with
70% leg length -159.08 121.48
BC-gail, Ant-v0 .w1th 946.20 112.06
repeated dynamics
gail-gail, Ant-v0 with
50% leg length 1090.50 90.81
gail-gail, Ant-v0 with
70% leg length 911.82 110.13
gail-gail, Ant-v0 with | -, 5 o, 128.72
repeated dynamics

2) When pre-train the BC, same dynamic parameters as the
GAIL module could bring the most benefits. However,
we argue that demonstrations from the same dynamic
parameters are not always available. So BC pre-trained in
different dynamics should be considered as it also brings
improvements according to our results.

3) GAIL could learn a good initialization by itself via pre-
training GAIL in different dynamic parameters.

We believe these conclusions are meaningful and instructive
for getting good results from GAIL. In the future, RL with
simple reward function should be implemented in another way
and more epochs should be set to gain more solid results.

REFERENCES

Michael Bloem and Nicholas Bambos. Infinite time horizon
maximum causal entropy inverse reinforcement learning. In
53rd IEEE conference on decision and control, pages 4911—
4916. IEEE, 2014.

Benjamin Eysenbach, Abhishek Gupta, Julian Ibarz, and
Sergey Levine. Diversity is all you need: Learn-
ing skills without a reward function. arXiv preprint
arXiv:1802.06070, 2018.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust
rewards with adversarial inverse reinforcement learning.
arXiv preprint arXiv:1710.11248, 2017.

Abhishek Gupta, Coline Devin, YuXuan Liu, Pieter Abbeel,
and Sergey Levine. Learning invariant feature spaces to
transfer skills with reinforcement learning. arXiv preprint
arXiv:1703.02949, 2017.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey
Levine. Soft actor-critic: Off-policy maximum entropy
deep reinforcement learning with a stochastic actor. In
International conference on machine learning, pages 1861—
1870. PMLR, 2018.

Jonathan Ho and Stefano Ermon. Generative adversarial imi-

tation learning. Advances in neural information processing
systems, 29, 2016.

Gaber Mohamed Elyan Eyad Hussein, Ahmed and Chrisina
Jayne. Imitation learning: A survey of learning methods.
ACM Computing Surveys, 50, 2017.

Rohit Jena and Katia Sycara. Loss-annealed gail for sample
efficient and stable imitation learning. arXiv preprint
arXiv:2001.07798, 5, 2020a.

Rohit Jena and Katia Sycara. Loss-annealed gail for sample
efficient and stable imitation learning. 2020b.

Katanforoosh and Kunin. Initializing neural networks.

Yunzhu Li, Jiaming Song, and Stefano Ermon. Infogail:
Interpretable imitation learning from visual demonstrations.
Advances in Neural Information Processing Systems, 30,
2017.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse
reinforcement learning. In Icml, volume 1, page 2, 2000.
Stéphane Ross, Geoffrey Gordon, and Drew Bagnell. A
reduction of imitation learning and structured prediction
to no-regret online learning. In Proceedings of the four-
teenth international conference on artificial intelligence and
statistics, pages 627-635. IMLR Workshop and Conference

Proceedings, 2011.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A
physics engine for model-based control. In 2012 IEEE/RSJ
international conference on intelligent robots and systems,
pages 5026-5033. IEEE, 2012.

Faraz Torabi, Garrett Warnell, and Peter Stone. Behavioral
cloning from observation. arXiv preprint arXiv:1805.01954,
2018.

Stephen Tu, Alexander Robey, Tingnan Zhang, and Nikolai
Matni. On the sample complexity of stability constrained
imitation learning. arXiv preprint arXiv:2102.09161, 2021.

Karl Weiss, Taghi M Khoshgoftaar, and DingDing Wang. A
survey of transfer learning. Journal of Big data, 3(1):1-40,
2016.

Tianhao Zhang, Zoe McCarthy, Owen Jow, Dennis Lee,
Xi Chen, Ken Goldberg, and Pieter Abbeel. Deep imitation
learning for complex manipulation tasks from virtual reality
teleoperation. In 2018 IEEE International Conference on
Robotics and Automation (ICRA), pages 5628-5635. IEEE,
2018.



