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Safe navigation is essential for mobile autonomous systems to deploy in
real-world environments. In this paper, we want to investigate different
safe reinforcement learning (RL) approaches for a robot to navigate safely
in dynamic cluster environments. Based on the same learning framework
where safe action is used, if the RL agent provides an unsafe action, we
developed two different approaches: one uses an optimization-based safety
controller to produce safe actions, the other uses human interventions as
safe actions. Our experiment results indicate that the optimization-based
safety controller can safeguard the robot from collision, but the approach
using human interventions achieves very similar performance as regular RL.
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1 INTRODUCTION
Autonomous navigation is a critical part of mobile robots. In order
for mobile robots to deploy in real-world scenarios, it is important
for mobile robots to navigate in a cluster environment with dynamic
obstacles safely. Learning approaches using reinforcement learning
[1] and interactive learning [2] have shown promising results in
robot navigation.

The goal of this project is to investigate learning-based approaches
with control-based hard safety constraints and learning-based ap-
proaches with human interventions for safe navigation in a dynamic
cluster environment. We use a learning framework for two different
safe-RL models: one using a safety controller (Safe RL-SC) and one
using human intervention (Safe RL-HI). We want to compare the
performances of these models. As a result, we test these models and
analyze the simulation results in various environments.

2 RELATED WORKS
Autonomous navigation has been a popular research area due to
its wide range of applications from self-driving cars to vacuum
robots. Various learning approaches have been proposed, including
reinforcement learning [1], interactive learning [2] and inverse
reinforcement learning [3]. These approaches have made substantial
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progress. [4] uses an imitation learning technique to allow UAVs
to navigate in cluttered natural environments without collisions.
We want to extend it to a dynamic cluster environment, which can
include both dynamic and static obstacles.
Since safety is a crucial part of robot real-world deployment

to prevent damage to the robots and the environment, different
approaches have been developed for RL-based controllers. One type
of approaches is using soft safety constrains like the Lagrangian
method [5] or constrained policy optimization [6] for robots to learn
safe behaviors, but these methods can not provide derived safety
guarantees.
Another type of approach is to use human interventions, which

only have safety guarantees in simple scenarios [7]. [2] combines
both human demonstrations and interventions to achieve safe train-
ing of a UAV. Wang et al. leverage human intervention to improve
both the performance and safety of reinforcement learning in navi-
gation [8]. Furthermore, since human interventions can be labor-
intensive during training, researchers proposed to train a supervised
learner to imitate human [9]. However, it has only been tested in
small simulation environments. None of these methods can provide
safety guarantees, either.
Researchers also developed methods that aim to guarantee zero

safety constraint violation including [10] using a barrier function
method [11] and a state-based action correction execution [12].
However, only systems in a static environment have been tested
using these methods. Our safe-RL model with safety controller
is closely related to [13], where [13] uses reactive synthesis and
MDP abstraction to generate safe actions, while our safe-RL model
generates safe actions using the safe set algorithm (SSA) [14].

All of these methods have their own strengths and weakness, we
want to study and compare the safe RL with human intervention
and the safe RL with hard safety constraints in dynamic cluster
environments.

3 METHODS
We used two different safe action approaches: one is a reinforcement
learning approach with a safety controller, and the other one is
an interactive learning approach using human interventions. To
analyze the two approaches, we build two RL models on the same
framework for fair comparison, where safe action is used when it
detects an unsafe action. We also created two baselines to evaluate
the efficacy of the safe learning approaches.
For environments, we create 2D environments with both dy-

namic obstacles and static obstacles. Dynamic obstacles are located
randomly and move in random directions to mimic real-world envi-
ronments. The goal of the robot is to navigate from the start area to
the goal area without any safety violations (collisions).
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For the robot and dynamic obstacles in the environment, we
use double integrator dynamics. 𝑠𝑅 presents the robot state and 𝑠𝑐

𝐸
represents the closest obstacle state. Both 𝑠𝑅 and 𝑠𝑐

𝐸
contain the

positions and velocities along the x-axis and y-axis. The control
input of robot 𝑎 are the accelerations along the x-axis and y-axis.
Given both robot state 𝑠𝑅 and the closest obstacle state 𝑠𝑐

𝐸
, the robot

needs to output action 𝑎 ∈ 𝐴 for navigation in the environment.
The robot dynamics are defined as:

¤𝑠𝑅 = 𝑓 (𝑠𝑅) + 𝑔(𝑠𝑅)𝑎 (1)

For all RL polices, we formulate the problem as a sparse reward
task for exploration of the environment using the reward function
𝑟 . The robot will receive a positive reward if it successfully reaches
the goal area or a negative reward if it causes a collision.

𝑟 =

{
2000, if reach goal.
−500, if collide.

(2)

3.1 RL with a Safety Controller
For the safety controller part, we use the safe set algorithm (SSA) [14]
to output a safe action 𝑎𝑠𝑎𝑓 𝑒 when we detect an unsafe action. The
central port of SSA is the valid safety index 𝜙 . Given an adjustable
[ ∈ [0, 1], we need to define 𝜙 such that ¤𝜙 ≤ −[𝜙 when 𝜙 ≥ 0
to ensure a feasible safe control input 𝑎𝑠𝑎𝑓 𝑒 ∈ 𝐴 exits. The safe
action 𝑎𝑠𝑎𝑓 𝑒 needs to keep the state of robot within the safe set
𝑠𝑅 ∈ 𝑆

(
𝑅
𝑠𝑎𝑓 𝑒) or converge it to the set 𝑆 (

𝑅
𝑠𝑎𝑓 𝑒) in finite time. As a

result, the safety index 𝜙 is defined as:

𝜙 = 𝑑2𝑚𝑖𝑛 − 𝑑2 − 𝑘 · ¤𝑑. (3)

We use 𝑑 and ¤𝑑 to represent the distance and relative velocity
from the robot to the closest obstacle respectively. Moreover, 𝑑𝑚𝑖𝑛

is the user-defined safety distance and k is a constant factor. Given
the robot dynamics in 1, we can express ¤𝜙 as

¤𝜙 =
𝜕𝜙

𝜕𝑥
𝑓 + 𝜕𝜙

𝜕𝑥
𝑔 𝑎𝑠𝑎𝑓 𝑒 = 𝐿𝑓 𝜙 + 𝐿𝑔𝜙 𝑎𝑠𝑎𝑓 𝑒 . (4)

When an unsafe action is detected (𝜙 > 0), the safety controller
will compute 𝜙𝑖 for every obstacle and add the corresponding safety
constraint within its sensing range. Given all safety constraints and
the feasible robot control set 𝐴 (actions within velocity and accel-
eration limits), SSA will output safe action 𝑎𝑠𝑎𝑓 𝑒 using quadratic
programming (QP), for simplicity, we use 𝑎 to represent 𝑎𝑠𝑎𝑓 𝑒 in
the following equation:

min
𝑎∈𝐴

| |𝑎 − 𝑎𝑟 | |2 = min
∈𝐴

𝑎T
[
1 0
0 1

]
𝑎 − 2𝑎T

[
1 0
0 1

]
𝑎𝑟

𝑠 .𝑡 .𝐿𝑓 𝜙𝑖 + 𝐿𝑔𝜙𝑖 𝑎 ≤ −[ 𝜙𝑖 , 𝑖 = 1, 2...𝑚.

(5)

Using SSA, the safety controller can produce safe actions 𝑎𝑠𝑎𝑓 𝑒
to safeguard the robot from collision in dynamic cluster environ-
ment navigation. The action 𝑎𝑠𝑎𝑓 𝑒 and its corresponding state will
be stored in the Safe Action Database. The RL agent will use the
database to learn safe actions during training.

Fig. 1. The proposed reinforcement learning approach with an SSA-based
safety controller (safe RL-SC)

3.2 RL with Human Intervention
Interactive learning approach has a very similar learning framework
as shown in Figure 2. When a RL agent outputs an unsafe action, the
simulation will pause and the robot will ask for human intervention.
The human expert will provide a safe action for the RL agent to
interact with the environment by giving the acceleration direction
and scale. These human interventions 𝑎ℎ will also be stored in the
Safe Action Database, so the RL agent will learn the provided human
intervention to create a safe action next time. However, the human
user has a much different observation space than the robot. Robots
can only observe nearby obstacles, but the human user can observe
the whole environment including all obstacles and the goal region.

In actual training, we take a relatively aggressive strategy to give
demonstrations. In most cases, we give directions that could help the
agent reach the goal as quickly as possible. And we oftentimes give
the maximum scale of acceleration to enable enough encouragement
for the agent.

Fig. 2. The interactive learning approach using human interventions (safe
RL-HI)

3.3 Baseline
The baseline (BL) we want to compare with is a basic reinforcement
learning approach without any safe components. We want to see if
using regular reinforcement learning can allow an agent to learn
safe actions to avoid collisions.
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4 EXPERIMENT

4.1 Setup
There are two environments in the environment: the default envi-
ronment (Fig.3a) where the robot needs to go from the south side
of the environment to the north side of the environment without
any collisions with the 50 dynamic obstacles; cross environment
(Fig.3b) where the robot needs to go from the south side to the west
side of the environment without any collisions with the 30 dynamic
obstacles and the 4 large static obstacles at all corners. The default
environment is designed to simulate a busy parking area and the
cross environment is designed to simulate an intersection. At the
beginning of each episode, dynamic obstacles will appear randomly
in the environment and start moving toward random directions.
These environments are rendered using the Pyglet library based on
[15]. In the environments, the robot can observe 3 closest obstacles
for safe navigation, but it does not know the goal region, so it needs
to explore the environment first to find the goal region.

For human intervention, we will collect data ourselves for human
intervention, since it requires human supervision during the training
process. During training, the human user will input the direction
and the magnitude of the velocity when an intervention is needed.
We collection ten sets of human interventions for each environment.
One set of human interventions is a set of human inputs that allows
a robot to reach the goal region from the start region without any
collisions once.

4.2 Implementation Details
The RL algorithm we used is the Delayed Deep Deterministic Policy
Gradients (TD3) [16] to train our RL agent. When training the policy,
we used a fixed 40% : 60% ratio between the RL agent actions and
safe actions to combine the training data. In our experiments, we
trained the three models with the same hyperparameters in the
two environments for 200 episodes. We trained each model 3 times
independently to get our experimental data. For evaluation, we ran
every model 10 times every 40 episodes.

4.3 Hypothesis
We proposed three hypotheses:

H1: Safe RL approachwith a safety controller (Safe RL-SC) achieves
the best safety performance in all three metrics.

H2: Safe RL approach with human interventions (Safe RL-HI) has
better safety performance than regular RL.

H3: Safe RL approach with human interventions (Safe RL-HI)
will be more aggressive than Safe RL approach with a safety
controller (Safe RL-SC) in terms of number of steps to reach
the goal region.

4.4 Performance Metrics
• Success rate: the percentage of robots that reach the goal
region without collision.

• Collision rate: the percentage of robots that cause collisions.
• Halting rate: the percentage of robots that are not making
any forward progress toward the goal area (staying at the
start area).

(a) Default

(b) Cross

Fig. 3. The two cluster dynamic environments.

4.5 Experimental Results and Discussion

Environment Default Cross
Regular RL (BL) (0.1667/0.5/0.3333) (0.5667/0.4333/0.0)

Safe RL-HI (0.1/0.2667/0.6333) (0.4666/0.5333/0.0)
Safe RL-SC (1.0/0.0/0.0) (0.9667/0.0/0.033)

Table 1. The mean performance of 30 runs of each approach after 200
episodes of training (Success rate/Collision rate/Halting rate).

‘ Based on the experimental results (Table.1, Fig. 5), we can see the
Safe RL approach with an SSA-based safety controller (Safe RL-SC)
has the best safety performance. Its success rate is closed to 1 and
is much higher than the other two methods. As shown in the Fig.
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(a) Default

(b) Cross

Fig. 4. Average reward over the training process in different environments.

4, safe RL-SC can reach the max reward around 20 episodes, which
means the SSA-based safety controller can effectively safeguard the
robot from collision to allow it to find the goal region quickly. We
successfully validate hypothesis H1 using these results. It shows
that the SSA-based safety controller can be a valid approach if the
dynamics of the robot is known and it can access accurate sensor
data.
For Safe RL approach with human interventions (safe RL-HI),

we expected Safe RL-HI can allow the robot to learn safe actions
from human interventions and outperform regular RL in terms of
higher success rate and lower collision rate. However, based on the
experimental results (Table.1, Fig. 5 and Fig. 6), we failed to find
any statistical significance between Safe RL-HI and regular RL. We
look at the movements of these trained robots. Both robots moved
straight toward the goal regions and no safe action was performed
when they are closed to obstacles. In the default environment, we
noticed the robot using Safe RL-HI stayed at the start region more
often than regular RL so Safe RL-HI has a much higher halting rate
than regular RL. As a result, we fail to validate hypothesis H2. For
hypothesis H3, since the provided human interventions ((actions to
guide the robots toward the goal region without causing collisions)

(a) Default

(b) Cross

Fig. 5. Success rate over the course of training in different environments.

are more aggressive than the safe actions generated by the safety
controller. However, since we did not observe any safe action from
the safe RL-HI but only a straight movement toward the goal region,
we conclude that we fail to validate hypothesis H3 as well.

To further investigate the issues related to safe RL-HI, we con-
ducted a smaller scale of experiments. We changed the observation
space from observing the three closest obstacles to a single closest
obstacle. We trained 200 episodes for each approach while keeping
all other hyperparameters unchanged. From Table.2, we can see
safe RL-HI has higher success rate than regular RL. We can also
observe a safer movement pattern (avoiding obstacles while moving
toward the goal region) provided by the safe RL-HI. Due to time and
computation constraints, we cannot find the causes of the issues,
but we suspect three possible causes: one can be due to the random-
ness in training, another one can be the heterogeneity of human
interventions, the third one can be the discrepancy of observation
between the human user and the robot. For the randomness in train-
ing, we notice the performance variance between models using the
same approach. For the heterogeneity of human interventions and
the discrepancy of observation, since the human user can observe
the whole environment and the robot can only observe the nearby
robots, human interventions can be dramatic different even though
the observations of the robots are very similar. Further investigation
on safe RL-HI is needed.
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(a) Default

(b) Cross

Fig. 6. Collision rate over the course of training in different environments.

Environment Default
Regular RL (BL) (0.3/0.7/0.0)

Safe RL-HI (0.5/0.5/0.0)
Safe RL-SC (1.0/0.0/0.0)

Table 2. The mean performance of 10 runs of each approach after 200
episodes of training where the robot can only observe the closet obstacle
(Success rate/Collision rate/Halting rate).

5 CONCLUSION
In this paper, we investigated different safe RL approaches for safe
navigation in cluster dynamic environments. We developed two
different approaches using the same learning framework: a safe re-
inforcement learning approach using an SSA-based safety controller,
which is a hard safety constraint approach; and a safe reinforcement
learning approach using human interventions. Our experimental re-
sults show that the SSA-based safety controller is a valid method if it
has access to the robot dynamics and accurate sensor data. However,
the learning approach using human interventions failed to perform
safe navigation. We have several suspected causes of failure, but
further investigation and experiments are needed.
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