
BCBSD: Anytime Bounded Conflicted-Based algorithm for Dynamic
Environments

Yue Yang1, Jing Liang2, Jia Pan3

Abstract— We present a noval algorithm for MAPF(multi-
agent path finding) problem in real world scenarios. Consider-
ing the inaccuracies in perception and dynamic properties of
real-world events, we use accurate decentralized perception to
enhance global detection of obstacles. Based on anytime BCBS
algorithm we develop the low level Focal Search to consider
the dynamic obstacles and unpredictable events in real-world
situations.

I. INTRODUCTION

MAPF (multi-agent path finding) problem aims at finding
paths for multiple agents from start positions to goal posi-
tions without conflicts [1]. MAPF problem is defined as a
graph, G (V,E), with m agents denoted as a1, a2 ... am. The
start and goal locations for each agent ai is si ∈V and gi ∈V
respectively.

There are a wide variety of algorithms for solving the
MAPF problem, including modified version of A∗, CBS
and its variants for different applications [2], [1], [3]. CBS
(Conflict-Based Search) is a two-level algorithm, where the
top level is used to find a path for each agent with the
constraint tree (CT), and the low level is designed to resolve
the conflicts caused by high level searches. The applications
of MAPF are used in videos games, robotics and traffic
control [3], [4]. In this paper, we propose a developed CBS
algorithm to do path finding particularly in scenarios where
there might be unpredictable obstacles.

In well known environment, where finding an optimal
solution of MAPF problem is possible, it is NP-hard to find
an optimal solution [5]. Specifically, for the CBS algorithm,
the complexity of the constraint tree is exponential in the
number of conflicts. To alleviate such issue, many sub-
optimal algorithms are developed [6], [7], [8], [9], and some
of them can scale to MAPF problem with more than 100
agents.

However in real-world scenarios, there might be many
unpredictable events, and the time left for adjusting the
current plan is limited and random [5], [10]. Therefore, the
MAPF planning algorithm must also have the capability
to always provide a valid adjusted solution even if it is
interrupted due to the time limits before it achieves a high-
quality plan. In other words, an interruptible or anytime
MAPF planning is desirable in a dynamic scenario, which
in this paper is modeled as a set of dynamic obstacles with
the Gaussian movement uncertainty.

Besides the dynamic events, inaccuracy of detection may
also effect path planning. We used decentralized detection to
help centralized planning which can replan all robots which
have probability to run into collision. And we also developed

Authors 1, 2 are with WaterMirror (Shanghai) Technology Limited and
author 3 is with University of Hong Kong

Fig. 1: In the figure, taller robots are dynamic obstacles, which
central perceptions cannot get their positions accurately nor in real-
time. Their motions are marked as red arrows. Small robots are
agents we can control by our algorithm, with certain start and goal
locations. Their calculated paths are marked as blue arrows. The
rectangular boxes are static obstacles, which cannot move and their
positions are exactly known by central server. As Our method is
CBS based algorithm. We developed anytime BCBS to handle real
world scenarios where there might be unpredictable events and the
central perception suffered from inaccurate detection of dynamic
obstacle. We use detection from decentralized robot to enhance the
centralized perception for more accurate path planning.

methods to satisfy anytime requirements in scenarios with
dynamic and uncertain events. Our contributions include:
• We improve anytime BCBS(Bounded CBS) by using

decentralized perception to help centralized multi-agent
path planning.

• We propose a method to deal planning in scenarios with
dynamic obstacles.

II. PRIOR WORK AND BACKGROUND

A. Optimality of Algorithm

For MAPF problem, there are unbounded solvers and
bounded solvers to trade off between optimality and effi-
ciency. Unbounded solvers include CA*, WHCA* [11],for
MAPF problem. These algorithms aim at making searching
faster. WHCA* based on Cooperative A* iteratively searches
paths in dynamic widows with given window size. However

they cannot provide guarantees to the quality of returned
path[12].

Bounded suboptimal methods can guarantee to find a solu-
tion that cost is no more than a given factor of optimal. Some
methods are proposed for bounded search, Weighted CBS,
Enhanced CBS [12] and inflated M*, where ECBS shows
better result than others and it is also faster than others [12].
ECBS-HWY has a better performance than ECBS but still
need users to provide highways to guide agents [13]. Based
on the work of MACBS [14], ICBS (improved-CBS) [15]
improves the searching algorithm using two methods, giving
different priority to conflicts and also restarting search from
scratch when new merge occurs. According to [4], ICBS has
higher successful rate than M* and ICTS (increasing cost tree
search) [3] when agent number is smaller than 55. But When
agent number is bigger, ICBS becomes much slower and
has lower successful rate than ICTS. Similar as CBS, ICTS
also has two levels, where high level searches tree called
increasing cost tree (ICT) in which each node stores cost
vector per agent and low level gives goal test on the ICT’s
nodes. Inspired by Weighted A*, Barer et al. [12] proposed
BCBS (Bounded CBS) using Focal list to bound the CBS
algorithm and also ECBS (Enhanced CBS) to improve the
efficiency of BCBS by increasing the flexibility in high level
search. Based on the work of ECBS, Li et al. [16] proposed
EECBS (Explicit Estimation CBS) by using online learning
to estimate cost of solution and EES (Explicit Estimation
Search) to help high level search. Boyarski et al. [2] proposed
IDCBS which uses IDA* to substitute high-level search in
CBS. However those algorithms do not take into account the
dynamic properties of searching environment.

B. Uncertainty in Environment

For real world applications, uncertainty is an issue when
we cannot accurately observe or predict exact locations or
movement of obstacles. Atzmon et al. [5] provide algorithm
pR-CBS, in which if the probability of conflict will not occur
is larger than p ∈ [0,1], the solution is called p-robust. We
propose probabilitics deal with the uncertainty of dynamic
obstacles.

Considering dynamic property of searching environment
comes up with anytime problem. Anytime problem requires
algorithms to find a solution with limited deliberation time.
Some works are done by replanning using the algorithms
which searching in static environments. Also algorithms such
as D* Lite [17] or RRA* [11] do replanning only the part
between agent’s current location and goal. Likhachev et al.
proposed ARA* (Anytime Repairing A*) [10] running A*
with inflated heuristics, and they also tells that when scenario
is dynamic and the dynamic events are not known at prior
sub-optimal searching is still possible. Then DA* (Anytime
Dynamic A*) [18] is proposed to decrease inflation factor
and continuously improve the planing result within deliber-
ation time. Based on these work, Cohen et al. [19] proposed
anytime focal search method to improve the efficiency of
planning. In this paper based on BCBS we propose a new
algorithm dealing with dynamic properties of environment
also considering anytime focal list to help searching.

III. OVERVIEW

We define the problem as MAPF problem, and here are
some assumptions in addition to classical MAPF problem:
• There are static and also dynamic obstacles in the

environment. The uncertain events may also happen in
the environment.

• we assume movement of dynamic obstacle is fit in
Guassian distribution with isotropic movement in each
direction where there is open space.

• Centralized planning is used and agents all have accu-
rate decentralized perception.

• Because of real world complexity, centralized percep-
tion cannot give accurate positions of dynamic obsta-
cles.

Focal Search is used by BCBS. It contains OPEN list and
FOCAL list. OPEN list is similar to A* and FOCAL list
is the subset of OPEN list. As algorithm 1 FOCAL list is
defined as:

FOCAL = {n ∈ OPEN, fc(n)≤C} (1)

Where fc(n) is the cost of node n and C is the given bound of
cost function. The minimum value of FOCAL list is fmin =
argminn∈OPEN fc(n). BCBS uses Focal search in both high
level search and also low level search. The high level Focal
Search (g,hc) is used to search conflict tree where g is the
cost and hc is the heuristic value. Low level Focal Search
(fa,hc) solve the conflicts in the conflict tree, where fa = g+
hc. As the function shows, the BCBS uses the cost function
the same as A*, but in our approach the cost function is fc
which is mentioned in algorithm 1.

1 Algorithm: Low level of anytime BCBS for dynamic
obstacles
Input: nstart , isGoal(n), succ(n), w
Output: Solution

1: OPEN = FOCAL = {nstart}
2: while FOCAL 6= ø do
3: fmin← fc(head(OPEN),dangerPosList)
4: n← head(FOCAL)
5: FOCAL← FOCAL\{n}
6: OPEN← OPEN \{n}
7: if isGoal(n) then return solution
8: for each n

′ ∈ succ(n) do
9: OPEN← OPEN∪{n′}

10: if fc(n
′
)≤ ω fmin then

11: FOCAL← FOCAL∪{n′}
12: if OPEN 6= /0 and fmin ≤ fc(head(OPEN)) then
13: updateLowerBound(ω fmin,ω fc(head(OPEN)))

14: function UPDATELOWERBOUND(Bo,Bn)
15: for each n in OPEN do
16: if (fc(n)> Bo)∧ (fc(n)≤ Bn) then
17: FOCAL← FOCAL∪{n}
18: function fc(n) return α1N +α2D+α3 fa

The goal of Focal Search is to find a sub-optimal solution
bounded by C as fast as possible. Therefore nodes saved in
FOCAL list and node expanded in each step should all be

carefully chosen. The priority function hpri(n) is defined to
select best node in each step to expand:

hpri(n) = (C−g(n))/hc(n) (2)

Function 2 is also called potential function which is used by
potential search. [19]. For nodes put to FOCAL list, in order
to satisfy anytime requirements Cohen et al. [19] provide
bound to costs of FOCAL list, and by adaptively update the
bound in each iteration the algorithm, Anytime Focal Search,
can converge quickly to a sub-optimal result. The function
to choose the bounding of cost is as equation 4

Ci = Si−1− ε (3)
Ci = ωi fmin (4)

Where i is the step time, ε is a small error, Si−1 is the last
actual cost, and Ci is the bound to the cost function in the ith
time step. As algorithm 1 in line 10-11 we select the node
which has lower cost value than weighted threshold Ci which
is defined as equation 4

As algorithm 1 in line 12-13, in each time step we need to
choose wi to update lower bound of Low-level Focal Search.
As line 14-17 the Bo and Bn represent old bound and new
bound respectively.

In our approach we keep the method of choosing wi same
as Cohen et al.[19]. To make the algorithm an anytime
planning we make wi decrease while time step i increases.
Further more, instead of recalculating all agents when con-
flicts happen, we only compute the agents involved in the
conflicts to decrease the running time of this algorithm.

IV. ANYTIME PROPERTIES

We develop anytime BCBS by using decentralized percep-
tion to enhance the localization of dynamic obstacles to give
more accurate positions of obstacles and real-time condition
of current environment.

In real world environment, there might be uncertainty and
inaccuracy in detection of obstacles. In our approach we
update the centralized planning enhanced by decentralized
perception. As Figure ??, each agent has a range of detection
R > kd in each step, where d is the walking distance
of the agent in deliberation time and k ∈ [1,2,3...] which
indicates how many steps the agent have to do replanning if
unpredictable obstacle is detected. If agent detect obstacles
which are not in previous planned environment, it will send
the information to central server, and the agents whose paths
are effected by the updated obstacles will need to re-plan.

When a new obstacle is detected, we treat it as an uncertain
obstacle with changing position, then the map would be
updated. In algorithm 2, Lo is the new detected obstacles,
Lp is the list of all agents path, and the Ld is the dangerous
points returned by this algorithm, Pa is the current position
of each agent, and Pp is the position of node in current path.
As line 6-11 we take into account the dangerous obstacles
which are near the paths of each agents. specifically as line
9-12, if the path is away from the path or the obstacle is
far from all the agents, then it won’t be put in the list for
planning.

Assuming dynamic obstacle would mostly keep the orig-
inal speed, so we estimate the position of the new detected
obstacle in next time step as a Gaussian distribution.

2 Algorithm: Detect dangerous points

Input: Lo, Lp
Output: Ld

1: Ld = {}
2: T HRESHOLD← λσp
3: for each agent do
4: path← Lp[agent]
5: for Pp ∈ path do
6: for each obstacle ∈ Lo do
7: distance1← Distance(Pp,Pa)
8: distance2← Distance(Pp,Po)
9: if distance1 >= distance2 then

10: score← Score(Pa,Po,Pp)
11: if score >= T HRESHOLD then
12: Ld ← Ld ∪{score}

return Ld

Fig. 2: The left figure shows the path before unpredictable obstacle
appears. In the middle picture, when the obstacle is detected by
robot 1, the position of this obstacle is updated to central server,
and the yellow points are the critical points each path has nearest
to the dangerous zone of obstacle. The path of robot 1 intersects
with the dangerous range. After replanning of robot 1, it will get a
new path which would keep the distance with obstacle.

For the agents which has paths near the obstacle, in
algorithm 1 we denote the distance between current node, n,
and the obstacle as D, and generate a new cost function fc
as in algorithm 1. As line 18-19, the cost function is defined
as:

fc = α1N +α2D+α3 fa (5)

Where N is the number of conflicts among agents, and fa is
the original cost function considering the cost-to-come and
cost-to-goal. In this equation α1, α2 and α3 are weighted to
balance the optimality and speed.

When doing path planning, we want the expanded node not
to collide with the detected obstacle, fp > 0 where fp is the
distance between an agent and the detected obstacle. Given
position of the dynamic obstacle as a Gaussian distribution,
fp ∼ (µp,σp). We set a confidence value λ to keep the path
away form the detected obstacle.

Theorem 4.1: Given confidence factor λ , the probability
of collision avoidance for each candidate point is bounded
by λ 2

1+λ 2

Proof: The distance between obstacle and agent for
planning is (µp,σp) and we have confidence factor λ .

We define the function Prob(fp > 0) as the probability
when fp > µp±λσp, according to Cantelli’s inequality:

Prob(fp > µp +λσp)≤
1

1+λ 2 (6)

Prob(fp > µp−λσp)≥
λ 2

1+λ 2 (7)

For the confidence factor λ , we known the distance is non-
negative µp±λσp ≥ 0. Therefore the equation 7 is tighter
than equation 6.
Theorem 4.1 give us an lower bound of agent to avoid
collision with dynamic obstacle with the confidence of λ .
To satisfy the sub-optimal purpose, we also need to give a
bound to the distance based cost fa.

Lemma 1.1: The optimal cost value, fa in equation 5, is
bounded by H∗ = g(wi,λ ,α1), where α1 > 0

Proof: Directly from the bound of Focal Search algo-
rithm, we have:

fc < wiC∗ (8)

where wi is an anytime factor chosen in each step, C∗ is the
optimal cost. We also have the lower bound of fa according
to Theorem 4.1, µp−λσp. Then we have:

α3 fa = fc−α1N−α2D (9)
α3 fa ≤ wiC∗−α2(µp−λσp) (10)

fa ≤
1

α1
(wiC∗−α2(µp−λσp) (11)

Here we define H∗= 1
α3
(wiC∗−α2(µp−λσp), then we have

fa ≤ H∗
With the bounds given by Theorem 4.1 and Lemma 1.1
our approach can achieve some sub-optimal result for path
planning.

As figure 2 shows, agent 1 whose path is below the confi-
dence threshold, the algorithm would replan the robot. Figure
2 shows one step of replanning. When robots are running, the
dynamic obstacle may also move, so the planning algorithm
need to update each time robots detect any obstacle with
unrecorded positions which threatens path of any agent.

REFERENCES

[1] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[2] E. Boyarski, A. Felner, D. Harabor, P. J. Stuckey, L. Cohen, J. Li, and
S. Koenig, “Iterative-deepening conflict-based search,” in Proceedings
of the 29th International Joint Conference on Artificial Intelligence
(IJCAI), 2020, pp. 4084–4090.

[3] G. Sharon, R. Stern, M. Goldenberg, and A. Felner, “The increasing
cost tree search for optimal multi-agent pathfinding,” Artificial Intel-
ligence, vol. 195, pp. 470–495, 2013.

[4] A. Felner, R. Stern, S. E. Shimony, E. Boyarski, M. Goldenberg,
G. Sharon, N. Sturtevant, G. Wagner, and P. Surynek, “Search-based
optimal solvers for the multi-agent pathfinding problem: Summary and
challenges,” in Tenth Annual Symposium on Combinatorial Search,
2017.

[5] D. Atzmon, R. Stern, A. Felner, N. R. Sturtevant, and S. Koenig,
“Probabilistic robust multi-agent path finding,” in Proceedings of the
International Conference on Automated Planning and Scheduling,
vol. 30, 2020, pp. 29–37.

[6] G. Wagner and H. Choset, “Subdimensional expansion for multirobot
path planning,” Artificial Intelligence, vol. 219, pp. 1–24, 2015.

[7] A. Felner, J. Li, E. Boyarski, H. Ma, L. Cohen, T. S. Kumar, and
S. Koenig, “Adding heuristics to conflict-based search for multi-
agent path finding,” in Twenty-Eighth International Conference on
Automated Planning and Scheduling, 2018.

[8] E. Lam, P. Le Bodic, D. D. Harabor, and P. J. Stuckey, “Branch-
and-cut-and-price for multi-agent pathfinding.” in IJCAI, 2019, pp.
1289–1296.

[9] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Seventh Annual Symposium on Combinatorial Search.
Citeseer, 2014.

[10] M. Likhachev, G. J. Gordon, and S. Thrun, “Ara*: Anytime a* with
provable bounds on sub-optimality,” in Advances in neural information
processing systems, 2004, pp. 767–774.

[11] D. Silver, “Cooperative pathfinding.” AIIDE, vol. 1, pp. 117–122,
2005.

[12] M. Barer, G. Sharon, R. Stern, and A. Felner, “Suboptimal variants
of the conflict-based search algorithm for the multi-agent pathfinding
problem,” in Seventh Annual Symposium on Combinatorial Search.
Citeseer, 2014.

[13] L. Cohen and S. Koenig, “Bounded suboptimal multi-agent path
finding using highways.” in IJCAI, 2016, pp. 3978–3979.

[14] G. Sharon, R. Stern, A. Felner, and N. R. Sturtevant, “Conflict-based
search for optimal multi-agent pathfinding,” Artificial Intelligence, vol.
219, pp. 40–66, 2015.

[15] E. Boyarski, A. Felner, R. Stern, G. Sharon, O. Betzalel, D. Tolpin,
and E. Shimony, “Icbs: The improved conflict-based search algorithm
for multi-agent pathfinding,” in Eighth annual symposium on combi-
natorial search. Citeseer, 2015.

[16] J. Li, W. Ruml, and S. Koenig, “Eecbs: A bounded-suboptimal search
for multi-agent path finding,” arXiv preprint arXiv:2010.01367, 2020.

[17] S. Koenig and M. Likhachev, “Improved fast replanning for robot
navigation in unknown terrain,” in Proceedings 2002 IEEE Interna-
tional Conference on Robotics and Automation (Cat. No. 02CH37292),
vol. 1. IEEE, 2002, pp. 968–975.

[18] M. Likhachev, D. I. Ferguson, G. J. Gordon, A. Stentz, and S. Thrun,
“Anytime dynamic a*: An anytime, replanning algorithm.” in ICAPS,
vol. 5, 2005, pp. 262–271.

[19] L. Cohen, M. Greco, H. Ma, C. Hernández, A. Felner, T. S. Kumar,
and S. Koenig, “Anytime focal search with applications.” in IJCAI,
2018, pp. 1434–1441.

